Aubrey De Grey Research Papers

It’s just after 10:30 a.m. on a pleasant weekday morning at SENS, a biotech lab in Mountain View, California. I’ve come to speak to its chief science officer, Aubrey de Grey. I find him sitting in his office, cracking open a bottle of Stone pale ale. “Would you like one?” he offers hospitably. De Grey drinks three or four pints of ale a day, and swears it hasn’t kept him from maintaining the same vigor he felt as a teenager in London.

Now the 54-year-old’s long hair, tied back in a ponytail, is turning gray, a change that would be unremarkable if he weren’t one of the world’s most outspoken proponents of the idea that aging can be completely eradicated. De Grey first gained notoriety in 1999 for his book The Mitochondrial Free Radical Theory of Aging, in which he argued that immortality was theoretically possible. Since then, he’s been promoting his ideas from prominent platforms—the BBC, the pages of Wired, the TED stage. He delivers his message in seemingly unbroken paragraphs, stroking his dark brown wizard’s beard, which reaches below his navel. Unlike most scientists, he isn’t shy about making bold speculations. He believes, for example, that the first person who will live to be 1,000 years old has most likely already been born.

In 2009, de Grey founded the nonprofit SENS, the world’s first organization dedicated to “curing” human aging, not just age-related diseases. The organization, which conducts its own research and funds studies by other scientists, occupies an unassuming space in a small industrial park. Its walls are affixed with large, colorful posters illustrating human anatomy and the inner workings of cells.

The basic vision behind SENS is that aging isn’t an inevitable process by which your body just happens to wear out over time. Rather, it’s the result of specific biological mechanisms that damage molecules or cells. Some elements of this idea date back to 1972, when the biogerontologist Denham Harman noted that free radicals (atoms or molecules with a single unpaired electron) cause chemical reactions, and that these reactions can damage the mitochondria, the powerhouses within cells. Since then, studies have linked free radicals to all sorts of age-related ailments, from heart disease to Alzheimer’s.

De Grey takes this concept further than most scientists are willing to go. His 1999 book argued that there could be a way to obviate mitochondrial damage, slowing the process of aging itself. Now SENS is working to prove this. Its scientists are also studying other potential aging culprits, such as the cross-links that form between proteins and cause problems like arteriosclerosis. They’re looking at damage to chromosomal DNA, and at “junk” materials that accumulate inside and outside cells (such as the plaques found in the brains of Alzheimer’s patients).

The area of research that gives the organization its name has to do with senescent cells. (SENS stands for Strategies for Engineered Negligible Senescence.) These are cells that stop dividing but accumulate inside us, secreting proteins that contribute to inflammation. It’s widely accepted that inflammation is involved in arthritis, heart disease, cancer, dementia and any number of other conditions that define old age. As de Grey’s thinking goes, if we could figure out how to remove senescent cells using approaches like drugs or gene therapy, along with other types of repair, we could potentially keep our bodies vital forever.

This desire to eradicate aging has, in the last decade, inspired a mini-boom of private investment in Silicon Valley, where a handful of labs have sprung up in SENS’ shadow, funded most notably by tech magnates. The secretive Calico was established by Google, in collaboration with Apple chairman Arthur Levinson, to tackle the problem of aging. Facebook’s Mark Zuckerberg and his wife, Priscilla Chan, have invested $3 billion in the attempt to “cure all disease.” Amazon’s Jeff Bezos invested some of his fortune in South San Francisco–based Unity Biotechnology, which has been targeting cell senescence in animal trials and hopes to begin human drug trials next year.

It’s this influx of wealth that has brought novel anti-aging theories out of the scientific fringes and into gleaming Silicon Valley labs. De Grey notes that developing the means to make everyone live forever is not cheap. “This foundation has a budget of somewhere around $4 million a year, not $4 billion, which is what it should be,” de Grey says. He invested $13 million of his own money in SENS, the lion’s share of the $16.5 million he inherited when his mother died. (He says she earned her wealth through property investments.) SENS has also been the beneficiary of PayPal co-founder Peter Thiel, perhaps Silicon Valley’s best-known advocate for curing death. As Thiel told the Washington Post in 2015, “I’ve always had this really strong sense that death was a terrible, terrible thing....I prefer to fight it.”


Immortality, it turns out, is not such an easy sell: Most people don’t like the idea of living forever. In legends of old as well as in recent popular culture, eluding death typically comes at a terrible cost; like zombies or vampires, immortal beings must feast on the living. Besides, a large percentage of today’s population also subscribes to religious beliefs in which the afterlife is something to be welcomed. When the Pew Research Center asked Americans in 2013 whether they would use technologies that allowed them to live to 120 or beyond, 56 percent said no. Two-thirds of respondents believed that radically longer life spans would strain natural resources, and that these treatments would only ever be available to the wealthy.

I ask de Grey about how the world would change—socioeconomically especially—if no one ever died. Would people still have children? If they did, how long would the planet be able to sustain billions of immortals? Wouldn’t every norm predicated on our inevitable deaths break down, including all the world’s religions? What would replace them? At what point might you decide that, actually, this is enough life? After decades? Centuries? And once you made that decision, how would you make your exit?

“I find it frustrating that people are so fixated on the longevity side effects,” de Grey says, clearly irritated. “And they’re constantly thinking about how society would change in the context of everyone being 1,000 years old or whatever. The single thing that makes people’s lives most miserable is chronic disease, staying sick and being sick. And I’m about alleviating suffering.”

To explain his vision, de Grey uses the analogy of a car that has its parts continually repaired. People receiving cell regeneration therapies would be able to constantly add more time to their lives whenever their bodies began to break down. “We have a warranty period, it’s true,” he allows. “But cars also have warranty periods, and yet we still have vintage cars—because we know how to do comprehensive, regular, preventative maintenance.”

De Grey spent several years after college working as a computer scientist in the field of artificial intelligence, which might explain why he likes to compare human bodies to machines. He has a PhD in biology from Cambridge, but he received it for theoretical work rather than lab-based research. He often refers to himself as an engineer or a “technologically focused biologist.”

I ask de Grey how a planet full of immortals would support itself. Would people want to work for eternity? He answers that automation will take over most jobs. “We will be able to spend our lives doing things that we find fulfilling and we won’t have to worry about remuneration,” he says. De Grey has been closely associated with transhumanism, a movement that believes technology will help the human race evolve far beyond its current limitations, but he dislikes the term, noting that it “just scares people.”

De Grey has robust faith that humans will come up with “some new way to distribute wealth that doesn’t depend on being paid to do things we wouldn’t otherwise do.” The first step, he believes, is issuing a universal basic income. It’s an idea that’s shared by other Bay Area entrepreneurs, many of whom are in the business of developing automation technologies. Last year, Y Combinator, a highly successful start-up incubator, gave 100 Oakland families between $1,000 and $2,000 a month in unconditional free income to find out how they’d spend it. The city of San Francisco recently announced plans to launch a similar pilot program. But these are small-scale experiments, and if robots do take over more jobs, it isn’t clear whether our economic and political systems would reconfigure to support all unemployed people in time, least of all forever.

And that 1,000-year-old person: He or she has already been born?

“Oh absolutely, yeah,” de Grey assures me. “It’s highly likely.”


In fact, the human body is not at all like a car, in the same way that the human brain is not like a computer. Such comparisons oversimplify the staggeringly complicated organic systems that researchers are only beginning to glimpse. The chaotic interactions between our trillions of cells and their enzymes are still poorly understood. We know almost nothing about why some people hit the genetic jackpot and live much longer and with much more vigor than others who have similar life circumstances. The question is all the more vexing because elderly humans are themselves an extremely recent phenomenon.

Judy Campisi is saying all this to me over coffee near her home in Berkeley. She works 45 minutes north in Novato at the Buck Institute for Research on Aging, a gleaming non-profit research institution. “For 99.9 percent of our human history as a species, there was no aging,” she says. Humans were very likely to die by our 30s from predation, starvation, disease, childbirth or any number of violent events.

Life spans in the developed world have more than doubled over the past century or so, but this hasn’t happened through any interventions against aging itself. Rather, it’s a byproduct of innovations such as clean water, medication, vaccinations, surgery, dentistry, sanitation, shelter, a regular food supply and methods of defending against predators.

A biochemist and professor of biogerontology, Campisi has spent her career studying aging and cancer, and the role senescent cells play in both. She has researched these cells in her lab and published widely on the possible evolutionary reasons they remain in our bodies. She posits that for most of human history, natural selection didn’t favor living to old age. Evolution protected younger people so they could pass along their genes, and senescent cells play a very important role.

“One thing evolution had to select for was protection from cancer,” she says. “Because we are complex organisms, we have lots of cells in our body that divide, and cell division is a very risky time for a cell because it’s easy to pick up a mutation when you are replicating three billion base pairs of DNA.” If a cell doesn’t divide, there are fewer chances for such a mutation to creep in. “So evolution put into place these very powerful tumor suppressant mechanisms—senescent cells—but they only had to last for 40 years at the most.”

What serves as a preventive mechanism in early life later can become a cancer-causing agent of its own, Campisi says. Senescent cells contribute to inflammation, and “inflammation is the number one risk factor for all diseases of aging, including cancer.” Eliminating these cells might cut down on various ailments, but no one is yet sure what the side effects would be.

The idea that senescent cells contribute to aging was first postulated in the 1960s. Yet 50 years later, scientists still don’t entirely understand the role they play. All Campisi can say definitively is that, for most of human history, there was “no evolutionary pressure to make that system better because everybody died young.”

When I ask Campisi why some scientists talk about “curing” aging, she says it comes down to getting interventions approved. “There are people who want to consider aging a disease for the purposes of going to regulatory agencies and having a specific drug able to treat a specific symptom, which you can only do if it’s recognized as a disease.” But Campisi stresses that living forever is not the goal of most research on aging. Instead, she says it’s primarily aimed not at life span but “health span”—increasing the number of years that people can remain physically and mentally agile.

Campisi has known de Grey for years, collaborates with SENS and even serves on the organization’s advisory board. I ask what she makes of his assertion that someone alive today will reach the age of 1,000.

“I have to tell you Aubrey has two hats,” she says, smiling. “One he wears for the public when he’s raising funds. The other hat is when he talks to a scientist like me, where he doesn’t really believe that anyone will live to 1,000 years old. No.”


One thing we do know is that there are more elderly people alive now than there have ever been in the history of the planet. Even if today’s life-extension researchers made meaningful breakthroughs, the therapies wouldn’t be available for many years to come. That means we’re about to face a lot of death, says Rachel Maguire, a research director focusing on health care at the Institute for the Future, in Palo Alto. “By 2025 or 2030, there will be more of a culture of dying and lots of different ways of experiencing it. There are early signs of new types of funerals and spiritual formations around this.” Maguire foresees new end-of-life plans, including assisted dying. When it comes to aging, she points out that biological research is only one piece of a puzzle that must also include economics, politics and cultural change. “I don’t think we have answers yet for how we’d do the other pieces. And the financial piece alone is huge.”

There’s already a huge disparity between the life spans of rich and poor Americans, and critics of the new longevity research worry the gap may only grow wider. A 2016 report from the Brookings Institution found that, for men born in 1920, there was a six-year difference in life expectancy between men at the top 10 percent and bottom 10 percent of the earnings ladder. For men born in 1950, the difference was 14 years. For women, the gap grew from 4.7 to 13 years. In other words, advances in medicine haven’t helped low-income Americans nearly as much as their wealthier counterparts.

I had a glimpse of that discrepancy as I used ride-hail apps to get around the Bay Area. On my way to Mountain View, where the median household income is $103,488, my driver, a woman in her 50s, told me she had trouble paying for gas and was sleeping in the car between nights on relatives’ couches. Sometimes, she said, she was stricken by bouts of rheumatoid arthritis. If her joints seized up while she was driving, she had to pull over and wait until the episode passed, usually not working anymore that day. I did not want to ask how she would feel if she ended up living so long that her future included another two decades of driving.

Jake Dunagan, the director of design futures at the consulting firm Very Nice, studies the cognitive biases that make it difficult for people to plan ahead. “That’s one of the conundrums of futurist work: The future doesn’t exist,” Dunagan tells me. “It’s always a projection.” Our minds, he says, have not evolved to be very good at seeing our future as connected to our present, as we spent so much of our early existence concerned with outwitting immediate threats.

Dunagan has little patience for Silicon Valley’s longevity research; he says proponents are not sufficiently interested in the details. “The rich people are defining the terms of the longevity conversation and have enhanced access to these technologies,” he says. “Everyone wants to live longer, to some degree, but it’s also the sense of privilege, of selfishness to it that’s ‘I want mine. I always want mine.’ Well, what if everyone had this? What would be the long-term implications of that?”


In 2006, the magazine MIT Technology Review published a paper called “Life Extension Pseudoscience and the SENS Plan.” The nine co-authors, all senior gerontologists, took stern issue with de Grey’s position. “He’s brilliant, but he had no experience in aging research,” says Heidi Tissenbaum, one of the paper’s signatories and a professor of molecular, cell and cancer biology at the University of Massachusetts Medical School. “We were alarmed, since he claimed to know how to prevent aging based on ideas, not on rigorous scientific experimental results.”

More than a decade later, Tissenbaum now sees SENS in a more positive light. “Kudos to Aubrey,” she says diplomatically. “The more people talking about aging research, the better. I give him a lot of credit for bringing attention and money to the field. When we wrote that paper, it was just him and his ideas, no research, nothing. But now they are doing a lot of basic, fundamental research, like any other lab.”

In marked contrast with de Grey, however, Tissenbaum doesn’t see aging itself as the problem. “I don’t think it’s a disease,” she says. “I think it’s a natural process. Life and death are a part of the same coin.”

Instead of seeking out a universal cure for aging, Tissenbaum finds it more useful to look at the genes involved in specific factors, such as good metabolic function and resistance to stress. For her own research, she has artificially extended the lives of C. elegans roundworms and mice, but she’s found that the creatures are sluggish and frail during that extra period of life. In other words, extending life through lab-based means doesn’t necessarily lead to good health. “If applied to humans, this would likely lead to unsustainable healthcare costs,” she and her co-authors concluded in a 2015 study published in the Proceedings of the National Academy of Sciences.

There are all kinds of theories about how to close the gap between life span and health span, and not all of them focus on senescent cells. Some scientists think taking aspirin and vitamin D could reduce inflammation throughout the body and lower the incidences of all kinds of diseases. Others believe the key is to repair telomeres, the sequences at the ends of each chromosome that unravel with stress and age. Research is still very much in progress on all of these ideas.

Meanwhile, scientists are trying to understand why the brain deteriorates over time, losing mass and neural circuitry. Tissenbaum and others are trying to understand these mechanisms, hoping to find new treatments for neurodegenerative diseases. But she doesn’t expect any intervention to keep humans healthy forever. “It may be that the brain has a finite life span,” she says.

For now, Tissenbaum recommends the usual methods of fending off frailty. Studies have shown that regular physical exercise can stimulate neural networks and keep connections alive. So can challenging mental activities. “If you always do crossword puzzles, try Sudoku,” she says. “Where we have really progressed is in our understanding of how keeping your mind and body active is fundamental to healthy aging.”

Many of the world’s oldest stories are quests for eternal life, from Herodotus’ fountain of youth to the medieval Holy Grail. There’s a great deal of money and brainpower invested in the hope that science will finally deliver on this promise. The research in these labs might yield more incremental breakthroughs, revealing the mechanisms behind Alzheimer’s or certain types of cancer. But for some true believers, that won’t be enough. De Grey, for one, dislikes the idea of seeking cures for individual age-related diseases. “I believe that the term ‘disease’ has become one that does far more harm than good, as has ‘cure,’” he says, “such that some aspects of aging are inappropriately described as curable diseases and others as ‘aging itself.’”

I asked Judy Campisi if she thought there was an upper limit to the human life span. “I suspect there is,” she said. “Like you’d say there’s a limit to running a marathon. You aren’t going to ever run one in 30 seconds.” When it comes to extending life, she says, “we think the upper limit we could get to is around 115 to 120 years old—if we don’t blow ourselves up before then, or the planet doesn’t melt down.”

If Campisi and others are right, we may come to accept that we’re profoundly mortal creatures after all. Still, we seem to be driven, as a species, to overcome every adversity we encounter. We may not live forever, or even to 1,000, but a more vibrant old age could yet be on the horizon for all of us.

Editor’s Note, May 25, 2017: An earlier version of this article erroneously called the Buck Institute a “gleaming profit institution”, as opposed to a non-profit, and described its distance from Berkeley as two hours instead of 45 minutes.

Like this article?
SIGN UP for our newsletter

About Elmo Keep

Originally from Australia, Elmo Keep is a freelance writer based in Brooklyn. Her work has appeared in Matter, The Awl, the International New York Times and other outlets.

Read more from this author

We Recommend

Aubrey David Nicholas Jasper de Grey (; born 20 April 1963[6])[7] is an English author and biomedical gerontologist.[8][9][10][11] He is currently the Chief Science Officer of the SENS Research Foundation and VP of New Technology Discovery at AgeX Therapeutics, Inc.[12][2] He is editor-in-chief of the academic journal Rejuvenation Research, author of The Mitochondrial Free Radical Theory of Aging (1999) and co-author of Ending Aging (2007). He is known for his view that medical technology may enable human beings alive today to live indefinitely.[13]

De Grey's research focuses on whether regenerative medicine can prevent the aging process.[14] He works on the development of what he calls "Strategies for Engineered Negligible Senescence" (SENS), a collection of proposed techniques to rejuvenate the human body and stop aging. To this end, he has identified seven types of molecular and cellular damage caused by essential metabolic processes. SENS is a proposed panel of therapies designed to repair this damage.[15]

De Grey is an international adjunct professor of the Moscow Institute of Physics and Technology,[16] a fellow of the Gerontological Society of America,[17] the American Aging Association, and the Institute for Ethics and Emerging Technologies.[18] He has been interviewed in recent years in a number of news sources, including CBS 60 Minutes, the BBC, The New York Times, Fortune Magazine, The Washington Post, TED, Popular Science, The Colbert Report, Time and the Skeptics' Guide to the Universe. He is also a member of Flooved advisory board.

Early life and education[edit]

De Grey was born and brought up in London, England.[19] He told The Observer that he never knew his father, and that his mother Cordelia, an artist, encouraged him in the areas she herself was the weakest: science and mathematics.[4] He was educated at Sussex House School[20] and Harrow School. He attended the University of Cambridge, and studied at its constituent college of Trinity Hall. He graduated with a BA in computer science in 1985.[21]


After graduation in 1985, de Grey joined Sinclair Research Ltd as an artificial intelligence and software engineer. In 1986, he cofounded Man-Made Minions Ltd to pursue the development of an automated formal program verifier. He met his wife, fruit fly geneticist Adelaide Carpenter, at a graduate party in Cambridge. Through her he was introduced to the intersection of biology and programming when her boss needed someone who knew about computers and biology to take over the running of a database on fruit flies.[22] He educated himself in biology by reading journals and textbooks, attending conferences, and being tutored by his wife.[23][24] From 1992 to 2006, he was in charge of software development at the university's Genetics Department for the FlyBasegenetic database.[25]

Cambridge awarded de Grey a PhD in biology on 9 December 2000.[21][26] The degree was based on his 1999 book The Mitochondrial Free Radical Theory of Aging, in which de Grey wrote that obviating damage to mitochondrial DNA might by itself extend lifespan significantly, though he said it was more likely that cumulative damage to mitochondria is a significant cause of senescence, but not the single dominant cause.


De Grey argues that most of the fundamental knowledge needed to develop effective anti-aging medicine already exists, and that the science is ahead of the funding. He works to identify and promote specific technological approaches to the reversal of various aspects of aging, or, as de Grey puts it, "... the set of accumulated side effects from metabolism that eventually kills us."[27]

As of 2005[update], his work centered on a detailed plan called Strategies for Engineered Negligible Senescence (SENS), which is aimed at preventing age-related physical and cognitive decline. In March 2009, he cofounded the SENS Research Foundation (named SENS Foundation until early 2013), a non-profit organisation based in California, United States, where he currently serves as Chief Science Officer. The Foundation "works to develop, promote and ensure widespread access to regenerative medicine solutions to the disabilities and diseases of aging,"[28] focusing on the Strategies for Engineered Negligible Senescence. Before March 2009, the SENS research program was mainly pursued by the Methuselah Foundation, cofounded by de Grey.

A major activity of the Methuselah Foundation is the Methuselah Mouse Prize,[29] a prize designed to incentivize research into effective life extension interventions by awarding monetary prizes to researchers who stretch the lifespan of mice to unprecedented lengths. De Grey stated in March 2005 "if we are to bring about real regenerative therapies that will benefit not just future generations, but those of us who are alive today, we must encourage scientists to work on the problem of aging." The prize reached 4.2 USD million in February 2007.

In 2005, he was the subject of two highly critical editorials accompanying an article in MIT Technology Review.[30]

In 2007, de Grey wrote the book Ending Aging with the assistance of Michael Rae.[31] It provides a detailed account of the science, politics and social challenges of the entire SENS agenda.[32]

In a 2008 broadcast on the Arte German & French TV, de Grey claimed that the first human to live 1,000 years was probably already alive, and might even be between 50 and 60 years old already.[33]

Since 2008, soon after he began speaking publicly about his gerontological theories, de Grey has been scientific advisor for the Campaign for Aging Research (C.A.R.).[34]

As of 2013[update], the SENS Research Foundation has an annual budget of $4 million.[35]

Pro-aging trance[edit]

The "pro-aging trance" is a term coined by Grey to describe "the impulsion to leap to embarrassingly unjustified conclusions in order to put the horror of aging out of one's mind".[36] According to de Grey, the pro-aging trance or "pro-aging edifice"[37] is a psychological strategy which people use to cope with aging, and which is rooted in the belief that aging is not only immutable and unavoidable, but desirable in some sense, as part of the natural or divine order that should not be perturbed. De Grey refers, in this regard, to the general public's ambivalence towards aging. For example, he states that SENS research is often misunderstood or misrepresented as likely to lead to prolonging, rather than postponing, the period of decrepitude characteristic of old age—a belief that de Grey calls the "Tithonus error", in reference to the myth of Tithonus. He describes this "pro-aging" stance as a rational response to the perceived inevitability of aging, and compares it with related ideas and experimental findings in terror management theory.[38] However, de Grey believes that defeating aging is feasible and that the pro-aging trance represents a huge barrier to combating aging.[39]

Funding of SENS Research Foundation[edit]

In 2011, de Grey inherited roughly $16.5 million on the death of his mother.[40] Of this he assigned $13 million to fund SENS research, which by 2013 had the effect of roughly doubling the SENS Research Foundation's yearly budget to $4 million.[citation needed] Other donors who have given millions to the Foundation include investor Peter Thiel.[40] The foundation also has yearly funding drives that have been successful with some significant donors offering matching grants for members of the public who donate.[41][42]

AgeX Therapeutics, Inc.[edit]

In July 2017 de Grey was appointed Vice President of New Technology Discovery at AgeX Therapeutics, a startup in the Longevity space helmed by Michael D. West, PhD.[2][12][43][44]

The seven types of aging damage[edit]

Main article: Strategies for Engineered Negligible Senescence

De Grey proposed the following types of aging damage:

  1. Mutations – in chromosomes causing cancer due to nuclear mutations/epimutations:
    These are changes to the nuclear DNA (nDNA), the molecule that contains genetic information in eukaryotes, or to proteins which bind to the nDNA. Certain mutations can lead to cancer, and, according to de Grey, non-cancerous mutations and epimutations do not contribute to aging within a normal lifespan, so cancer is the only endpoint of these types of damage that must be addressed.
  2. Mutations – in mitochondria:
    Mitochondria are components in eukaryotic cells that are important for energy production. They contain their own genetic material, and mutations to their DNA can affect a cell's ability to function properly. Indirectly, these mutations may accelerate many aspects of aging.
  3. Junk – inside of cells, aka intracellular aggregates:
    Cells are constantly breaking down proteins and other molecules that are no longer useful or which can be harmful. Those molecules which can't be digested simply accumulate as junk inside of cells. Atherosclerosis, macular degeneration and many kinds of neurodegenerative diseases (such as Alzheimer's) are associated with this problem.
  4. Junk – outside of cells, aka extracellular aggregates:
    Harmful junk protein can also accumulate outside of cells. The amyloid senile plaque seen in the brains of Alzheimer's patients is one example.[45]
  5. Cells – too few, aka cellular loss:
    Some of the cells in bodies cannot be replaced, or can be replaced only very slowly – more slowly than they die. This decrease in cell number causes the heart to become weaker with age, causes Parkinson's disease, and impairs the immune system.
  6. Cells – too many, aka cellular senescence:
    This is a phenomenon where some cells can no longer divide, but also do not die and let others divide. They may also do other things that they're not supposed to, like secreting proteins that may be harmful. Cell senescence has been proposed as cause or consequence of diabetes mellitus type 2.[46] Immune senescence is also caused by this.[citation needed]
  7. Extracellular protein crosslinks:
    Cells are held together by special linking proteins. When too many cross-links form between cells in a tissue, the tissue can lose its elasticity and cause problems including arteriosclerosis and presbyopia.[27][47]


De Grey is also a cryonicist, having signed up with Alcor.[48] He has supported and advocated human cryopreservation, for example by signing an open letter to support research into cryonics,[49] and by being an advisor to a UK cryonics and cryopreservation advocacy group.[50]


Technology Review debate[edit]

In 2005, MIT Technology Review, in cooperation with the Methuselah Foundation, announced a $20,000 prize for any molecular biologist who could demonstrate that SENS was "so wrong that it is unworthy of learned debate." The judges of the challenge were Rodney Brooks, Anita Goel, Vikram Sheel Kumar, Nathan Myhrvold, and Craig Venter. Five submissions were made, of which three met the terms of the challenge. De Grey wrote a rebuttal to each submission, and the challengers wrote responses to each rebuttal. The judges concluded that none of the challengers had disproved SENS, but the magazine opined that one of the rebuttals had been particularly eloquent and well written, and awarded the contestant $10,000. The judges also noted "the proponents of SENS have not made a compelling case for SENS," and wrote that many of its proposals could not be verified with the current level of scientific knowledge and technology, concluding that "SENS does not compel the assent of many knowledgeable scientists; but neither is it demonstrably wrong."[51] The critics single out three proposed therapies for criticism: somatic telomerase deletion, somatic mitochondrial genome engineering, and the use of transgenic microbial hydrolase.[52]

EMBO Reports[edit]

A 2005 article about SENS published in the viewpoint section of EMBO Reports by 28 scientists concluded that none of de Grey's therapies "has ever been shown to extend the lifespan of any organism, let alone humans".[53] The SENS Research Foundation, of which de Grey was a cofounder, seems to agree with the EMBO Report as it states, "If you want to reverse the damage of aging right now I'm afraid the simple answer is, you can't."[54] Nonetheless, de Grey argues that this reveals a serious gap in understanding between basic scientists and technologists and between biologists studying aging and those studying regenerative medicine.[55] The 25-member Research Advisory Board of his own SENS Research Foundation have signed an endorsement of the plausibility of the SENS approach.[56]


  • The Mitochondrial Free Radical Theory of Aging (1999, Cambridge University Press)
  • Strategies for Engineered Negligible Senescence: Why Genuine Control Of Aging May Be Foreseeable (Annals of the New York Academy of Sciences, 2004)
  • Ending Aging: The Rejuvenation Breakthroughs That Could Reverse Human Aging in Our Lifetime (with Michael Rae) (St. Martin's Press, 2008)

See also[edit]


  1. ^SRF Home, SENS Research Foundation. Retrieved on 23 October 2013.
  2. ^ abc"Biotime unit Agex Therapeutics appoints Aubrey De Grey as VP of new technology discovery". Reuters. July 13, 2017. 
  3. ^MIPT NewsArchived 27 September 2013 at the Wayback Machine.
  4. ^ abTempleton, Tom. Holding back the years, The Observer, 16 September 2007.
  5. ^The Mitochondrial Free Radical Theory of Aging. Dedication.
  6. ^Bushko, Renata G., ed. (2005). Future of Intelligent and Extelligent Health Environment, volume 118. IOS Press. p. 328. ISBN 1-58603-571-1. 
  7. ^de Grey, A.; Jacobsen, S.D. (8 June 2014). "Dr. Aubrey de Grey: SENS Research Foundation, Chief Science Officer and Co-founder; Rejuvenation Research, Editor-in-Chief". In-Sight (5.A): 29–33. 
  8. ^"Fall 2014 Biology Distinguished Lecturer – Aubrey de Grey, Ph.D. of the Sens Research Foundation". Northeastern University. Retrieved 23 April 2015. 
  9. ^"Live to 120 Plus—Utopia or Dystopia? – The UCLA Institute for Society and Genetics". Retrieved 23 April 2015. 
  10. ^"Regenerative Medicine Against Aging - Dr. Aubrey de Grey - Part 1 - MIT Club of Northern California". MIT Video. Retrieved 23 April 2015. 
  11. ^"Who wants to live forever? Scientist sees aging cured". Reuters. Retrieved 23 April 2015. 
  12. ^ ab"Agex to develop powerful regenerative and anti-aging treatments". Next Big Future. December 16, 2017. 
  13. ^Hang in There: The 25-Year Wait for Immortality,
  14. ^de Grey, Aubrey. "Defeating Age". IAI. Retrieved 29 January 2014. 
  15. ^"SRF Home - SENS Research Foundation". Retrieved 23 April 2015. 
  16. ^Doctor Aubrey de Grey an MIPT Adjunct Professor. MIPT. Moscow Institute of Physics and Technology. (28 June 2013). Retrieved on 23 October 2013.
  17. ^Gerontological Society of America. Retrieved on 23 October 2013.
  18. ^"Aubrey de Grey". Retrieved 23 April 2015. 
  19. ^Stripp, David (14 June 2004). "This Man Would Have You Live A Really, Really, Really, Really Long Time. If a mouse can survive the equivalent of 180 years, why not us? Or our kids? Scientific provocateur Aubrey de Grey has a plan". CNN. Retrieved 24 June 2012. 
  20. ^"About Us". Sussex House School. Archived from the original on 9 October 2012. 
  21. ^ ab"Executive Team". Retrieved 23 April 2015. 
  22. ^Aubrey de Grey, Methuselah Foundation, accessed 9 February 2010.
  23. ^Tom Templeton. "Tom Templeton on biomedical theorist Aubrey de Grey". the Guardian. Retrieved 23 April 2015. 
  24. ^"The Prophet of Immortality". Popular Science. Retrieved 23 April 2015. 
  25. ^Misra, S.; Crosby, M.; Mungall, C.; Matthews, B.; Campbell, K.; Hradecky, P.; Huang, Y.; Kaminker, J.; Millburn, G.; Prochnik, S. E.; Smith, C. D.; Tupy, J. L.; Whitfied, E. J.; Bayraktaroglu, L.; Berman, B. P.; Bettencourt, B. R.; Celniker, S. E.; De Grey, A. D.; Drysdale, R. A.; Harris, N. L.; Richter, J.; Russo, S.; Schroeder, A. J.; Shu, S. Q.; Stapleton, M.; Yamada, C.; Ashburner, M.; Gelbart, W. M.; Rubin, G. M.; Lewis, S. E. (2002). "Annotation of the Drosophila melanogaster euchromatic genome: A systematic review". Genome Biology. 3 (12): research0083.research0081–83.research0081. doi:10.1186/gb-2002-3-12-research0083. PMC 151185. PMID 12537572. 
  26. ^Congregation of the Regent House on 9 December 2000, Cambridge University Reporter, 13 December 2000. Special regulations available only to Cambridge degree holders (of whatever discipline) permit the submission of "...a significant contribution to scholarship" instead. Though the awardee has not been registered as a PhD student, the degree is not honorary; applicants are evaluated by the usual methods, with examiners appointed and an oral defense of the submitted work.
  27. ^ abHang in There: The 25-Year Wait for Immortality interview with LiveScience
  28. ^[1]Archived 22 December 2010 at the Wayback Machine.
  29. ^"Methuselah Foundation". Retrieved 23 April 2015. 
  30. ^Nuland, Sherwin. February 2005. "Do You Want to Live Forever?" Technology Review.
  31. ^de Grey, Aubrey; Rae, Michael. September 2007. Ending Aging: The Rejuvenation Breakthroughs that Could Reverse Human Aging in Our Lifetime. New York, NY: Saint Martin's Press, 416 p. ISBN 0-312-36706-6.
  32. ^Ben Best (December 2007). "Book Review: Ending Aging". Life Extension Magazine. Life Extension Foundation. Retrieved 12 April 2007. 
  33. ^Aux frontières de l'immortalité, 16 November 2008, 23:10, director  : Gerald Caillat
  34. ^"Longevity Meme Newsletter, July 20 2009". Fight Aging!. Retrieved 23 April 2015. 
  35. ^"Organizational Reports". Retrieved 23 April 2015. 
  36. ^de Grey, Aubrey (August 2008). "Combating the Tithonus Error: What Works?". Rejuvenation Research. 11 (4): 713–715. doi:10.1089/rej.2008.0775. PMID 18729803. 
  37. ^de Grey, Aubrey (February 2009). "Cracks in Social Gerontology's Pro-Aging Edifice". Rejuvenation Research. 12 (1): 1–2. doi:10.1089/rej.2009.0841. PMID 19236163. 
  38. ^Pyszczynski, T; Greenberg, J (September 2013). "Understanding the paradox of opposition to long-term extension of the human lifespan: fear of feath, cultural worldviews, and the illusion of objectivity". Rejuvenation Research. 16 (S1): S36–7. 
  39. ^Aubrey de Grey. "Aubrey de Grey: A roadmap to end aging - Talk Video -". Retrieved 23 April 2015. 
  40. ^ abBen Best (2013) "Interview with Aubrey de Grey, PhD". Life Extension Magazine.
  41. ^SENS Research Foundation (February 2015). "February 2015 Newsletter". SENS Research Foundation Newsletter. Retrieved 24 February 2015. 
  42. ^Reason (December 15, 2014). "SENS Fundraiser Success!". Fight Aging!. Retrieved 24 February 2015. 
  43. ^"The Smart Money Is Piling Into Regenerative Medicine". April 14, 2017. 
  44. ^"AgeX Therapeutics lands $10 mln". PE HUB. August 17, 2017. 
  45. ^"PTN interviews Dr. Aubrey de Grey, researcher of anti-aging regenerative medicine". PlanetTech News. Retrieved 3 August 2015. 
  46. ^Testa, Roberto; Antonio Ceriello (2007). "Pathogenetic Loop Between Diabetes and Cell Senescence". Diabetes Care. 30 (11): 2974–2975. doi:10.2337/dc07-1534. PMID 17965314. Retrieved 29 December 2012. 
  47. ^Aubrey de Grey (22 February 2010). Aubrey de Grey – In Pursuit of Longevity. Singularity University. 
  48. ^"Aubrey de Grey, PHD, An Exclusive Interview with the Renowned Biogerontologist". Retrieved 2016-02-02. 
  49. ^"Scientists Open Letter on Cryonics". Retrieved 2016-02-02. 
  50. ^"List of Advisors". Retrieved 2016-02-02. 
  51. ^"Is Defeating Aging Only a Dream?". Technology Review. Retrieved 23 August 2012. 
  52. ^"Life Extension Pseudoscience and the SENS Plan"(PDF). Technology Review. 
  53. ^Warner, H.; Anderson, J.; Austad, S.; Bergamini, E.; Bredesen, D.; Butler, R.; Carnes, B. A.; Clark, B. F. C.; Cristofalo, V.; Faulkner, J.; Guarente, L.; Harrison, D. E.; Kirkwood, T.; Lithgow, G.; Martin, G.; Masoro, E.; Melov, S.; Miller, R. A.; Olshansky, S. J.; Partridge, L.; Pereira-Smith, O.; Perls, T.; Richardson, A.; Smith, J.; Von Zglinicki, T.; Wang, E.; Wei, J. Y.; Williams, T. F. (Nov 2005). "Science fact and the SENS agenda. What can we reasonably expect from ageing research?". EMBO Reports. 6 (11): 1006–1008. doi:10.1038/sj.embor.7400555. ISSN 1469-221X. PMC 1371037. PMID 16264422. 
  54. ^"SENS Research Foundation FAQ". SENS Research Foundation. Retrieved 26 June 2011. 
  55. ^De Grey, A. D. N. J. (2005). "Like it or not, life-extension research extends beyond biogerontology". EMBO Reports. 6 (11): 1000. doi:10.1038/sj.embor.7400565. PMC 1371043. PMID 16264420. 
  56. ^"Research Advisory Board". Retrieved 23 April 2015. 

External links[edit]

  • Aubrey de Grey at TED
  • Machines Like Us interview date 11 March 2007
  • 'We will be able to live to 1,000' Interview with BBC website, outlining views
  • Popular Science article at the Wayback Machine (archived 11 June 2009)
  • Popular Mechanics article and podcast
  • Interview with Life Extension magazine
  • The Man Who Would Murder Death "A rogue researcher challenges scientists to reverse human aging" The Chronicle of Higher Education 2005-10-14
  • Antiaging Technology and Pseudoscience (a web site)
  • A short interview with AdG at Really Magazine (2005) at the Wayback Machine (archived 25 May 2009)
  • Joel Garreau. 'The Invincible Man: Aubrey de Grey, 44 Going on 1,000, Wants Out of Old Age', The Washington Post, 31 October 2007. Page C01.
  • Transcripts of Aubrey de Grey's conference lectures at Accelerating Future
  • Aubrey de Grey vs Sherwin Nuland. From the documentary, How to Live Forever
  • Interview, Bespoke Magazine, December 2012. Page 32
  • Aubrey de Grey: "Aging is emphatically not an inescapable destiny" Tendencias21, Mars 2013
  • Career advice for those working in Chemistry, an interview with Dr Aubrey De Grey
  • AgeX Therapeutics, Inc.

0 Replies to “Aubrey De Grey Research Papers”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *