Espelho Reflective Essay

"Mirror system" redirects here. For other uses, see Mirror system (disambiguation).

A mirror neuron, or cubelli neuron, is a neuron that fires both when an animal acts and when the animal observes the same action performed by another.[1][2][3] Thus, the neuron "mirrors" the behavior of the other, as though the observer were itself acting. Such neurons have been directly observed in primate species.[4] Birds have been shown to have imitative resonance behaviors and neurological evidence suggests the presence of some form of mirroring system.[4][5] In humans, brain activity consistent with that of mirror neurons has been found in the premotor cortex, the supplementary motor area, the primary somatosensory cortex and the inferior parietal cortex.[6]

The function of the mirror system in humans is a subject of much speculation. Some researchers in cognitive neuroscience and cognitive psychology consider that this system provides the physiological mechanism for the perception/action coupling (see the common coding theory).[3] They argue that mirror neurons may be important for understanding the actions of other people, and for learning new skills by imitation. Some researchers speculate that mirror systems may simulate observed actions, and thus contribute to theory of mind skills,[7][8] while others relate mirror neurons to language abilities.[9] Neuroscientists such as Marco Iacoboni (UCLA) have argued that mirror neuron systems in the human brain help us understand the actions and intentions of other people. In a study published in March 2005 Iacoboni and his colleagues reported that mirror neurons could discern whether another person who was picking up a cup of tea planned to drink from it or clear it from the table.[10] In addition, Iacoboni has argued that mirror neurons are the neural basis of the human capacity for emotions such as empathy.[11]

However, there are scientists who express skepticism about the theories being advanced to explain the function of mirror neurons. In a 2013 article for Wired, Christian Jarrett cautioned that:

...mirror neurons are an exciting, intriguing discovery – but when you see them mentioned in the media, remember that most of the research on these cells has been conducted in monkeys. Remember too that there are many different types of mirror neuron. And that we're still trying to establish for sure whether they exist in humans, and how they compare with the monkey versions. As for understanding the functional significance of these cells … don't be fooled: that journey has only just begun.[12]

To date, no widely accepted neural or computational models have been put forward to describe how mirror neuron activity supports cognitive functions.[13][14][15] The subject of mirror neurons continues to generate intense debate. In 2014, Philosophical Transactions of the Royal Society B published a special issue entirely devoted to mirror neuron research.[16]

Discovery[edit]

In the 1980s and 1990s, neurophysiologists Giacomo Rizzolatti, Giuseppe Di Pellegrino, Luciano Fadiga, Leonardo Fogassi, and Vittorio Gallese at the University of Parma placed electrodes in the ventral premotor cortex of the macaque monkey to study neurons specialize the control of hand and mouth actions; for example, taking hold of an object and manipulating it. During each experiment, the researchers allowed the monkey to reach for pieces of food, and recorded from single neurons in the monkey's brain, thus measuring the neuron's response to certain movements.[17][18] They found that some neurons responded when the monkey observed a person picking up a piece of food, and also when the monkey itself picked up the food. The discovery was initially sent to Nature, but was rejected for its "lack of general interest" before being published in a less competitive journal.[19]

A few years later, the same group published another empirical paper, discussing the role of the mirror-neuron system in action recognition, and proposing that the human Broca's region was the homologue region of the monkey ventral premotor cortex.[20] While these papers reported the presence of mirror neurons responding to hand actions, a subsequent study by Pier Francesco Ferrari and colleagues[21] described the presence of mirror neurons responding to mouth actions and facial gestures.

Further experiments confirmed that about 10% of neurons in the monkey inferior frontal and inferior parietal cortex have "mirror" properties and give similar responses to performed hand actions and observed actions. In 2002 Christian Keysers and colleagues reported that, in both humans and monkeys, the mirror system also responds to the sound of actions.[3][22][23]

Reports on mirror neurons have been widely published[24] and confirmed[25] with mirror neurons found in both inferior frontal and inferior parietal regions of the brain. Recently, evidence from functional neuroimaging strongly suggests that humans have similar mirror neurons systems: researchers have identified brain regions which respond during both action and observation of action. Not surprisingly, these brain regions include those found in the macaque monkey[1] However, functional magnetic resonance imaging (fMRI) can examine the entire brain at once and suggests that a much wider network of brain areas shows mirror properties in humans than previously thought. These additional areas include the somatosensory cortex and are thought to make the observer feel what it feels like to move in the observed way.[26][27]

Origin[edit]

The most common theory behind the origin of mirror neuron is the genetic account which suggests that the mirrorness of mirror neurons is due primarily to heritable genetic factors and that the genetic predisposition to develop Mirror neuron evolved because they facilitate action understanding. The other theories as to the origin of mirror neurons include Associative Learning, Canalization and Exaptation.[28][citation needed]

In monkeys[edit]

The first animal in which researchers have studied mirror neurons individually is the macaque monkey. In these monkeys, mirror neurons are found in the inferior frontal gyrus (region F5) and the inferior parietal lobule.[1]

Mirror neurons are believed to mediate the understanding of other animals' behaviour. For example, a mirror neuron which fires when the monkey rips a piece of paper would also fire when the monkey sees a person rip paper, or hears paper ripping (without visual cues). These properties have led researchers to believe that mirror neurons encode abstract concepts of actions like 'ripping paper', whether the action is performed by the monkey or another animal.[1]

The function of mirror neurons in macaques remains unknown. Adult macaques do not seem to learn by imitation. Recent experiments by Ferrari and colleagues suggest that infant macaques can imitate a human's face movements, though only as neonates and during a limited temporal window.[29] Even if it has not yet been empirically demonstrated, it has been proposed that mirror neurons underlie this behaviour and other imitative phenomena.[30] Indeed, there is limited understanding of the degree to which monkeys show imitative behaviour.[13]

In adult monkeys, mirror neurons may enable the monkey to understand what another monkey is doing, or to recognise the other monkey's action.[31]

In humans[edit]

It is not normally possible to study single neurons in the human brain, so most evidence for mirror neurons in humans is indirect. Brain imaging experiments using functional magnetic resonance imaging (fMRI) have shown that the human inferior frontal cortex and superior parietal lobe are active when the person performs an action and also when the person sees another individual performing an action. It has been suggested that these brain regions contain mirror neurons, and they have been defined as the human mirror neuron system.[32] More recent experiments have shown that even at the level of single participants, scanned using fMRI, large areas containing multiple fMRI voxels increase their activity both during the observation and execution of actions.[26]

Neuropsychological studies looking at lesion areas that cause action knowledge, pantomime interpretation, and biological motion perception deficits have pointed to a causal link between the integrity of the inferior frontal gyrus and these behaviours.[33][34][35]Transcranial magnetic stimulation studies have confirmed this as well.[36][37] These results indicate the activation in mirror neuron related areas are unlikely to be just epiphenomenal.

A study published in April 2010 reports recordings from single neurons with mirror properties in the human brain.[38] Mukamel et al. (Current Biology, 2010) recorded from the brains of 21 patients who were being treated at Ronald Reagan UCLA Medical Center for intractable epilepsy. The patients had been implanted with intracranial depth electrodes to identify seizure foci for potential surgical treatment. Electrode location was based solely on clinical criteria; the researchers, with the patients' consent, used the same electrodes to "piggyback" their research. The researchers found a small number of neurons that fired or showed their greatest activity both when the individual performed a task and when they observed a task. Other neurons had anti-mirror properties, that is, they responded when the participant performed an action but were inhibited when the participant saw that action.

The mirror neurons found were located in the supplementary motor area and medial temporal cortex (other brain regions were not sampled). For purely practical reasons, these regions are not the same as those in which mirror neurons had been recorded from in the monkey: researchers in Parma were studying the ventral premotor cortex and the associated inferior parietal lobe, two regions in which epilepsy rarely occurs, and hence, single cell recordings in these regions are not usually done in humans. On the other hand, no one has to date looked for mirror neurons in the supplementary motor area or the medial temporal lobe in the monkey. Together, this therefore does not suggest that humans and monkeys have mirror neurons in different locations, but rather that they may have mirror neurons both in the ventral premotor cortex and inferior parietal lobe, where they have been recorded in the monkey, and in the supplementary motor areas and medial temporal lobe, where they have been recorded from in human – especially because detailed human fMRI analyses suggest activity compatible with the presence of mirror neurons in all these regions.[26]

Another study has suggested that human beings don't necessarily have more mirror neurons than monkeys, but instead that there is a core set of mirror neurons used in action observation and execution. However, for other proposed functions of mirror neurons the mirror system may have the ability to recruit other areas of the brain when doing its auditory, somatosensory, and affective components.[39]

Doubts concerning mirror neurons[edit]

Although many in the scientific community have expressed excitement about the discovery of mirror neurons, there are scientists who have expressed doubts about both the existence and role of mirror neurons in humans. According to scientists such as Hickok, Pascolo, and Dinstein, it is not clear whether mirror neurons really form a distinct class of cells (as opposed to an occasional phenomenon seen in cells that have other functions),[40] and whether mirror activity is a distinct type of response or simply an artifact of an overall facilitation of the motor system.[14]

In 2008, Ilan Dinstein et al. argued that the original analyses were unconvincing because they were based on qualitative descriptions of individual cell properties, and did not take into account the small number of strongly mirror-selective neurons in motor areas.[13] Other scientists have argued that the measurements of neuron fire delay seem not to be compatible with standard reaction times,[40] and pointed out that nobody has reported that an interruption of the motor areas in F5 would produce a decrease in action recognition.[14] (Critics of this argument have replied that these authors have missed human neuropsychological and TMS studies reporting disruption of these areas do indeed cause action deficits[34][36] without affecting other kinds of perception.)[35]

In 2009, Lingnau et al. carried out an experiment in which they compared motor acts that were first observed and then executed to motor acts that were first executed and then observed. They concluded that there was a significant asymmetry between the two processes that indicated that mirror neurons do not exist in humans. They stated "Crucially, we found no signs of adaptation for motor acts that were first executed and then observed. Failure to find cross-modal adaptation for executed and observed motor acts is not compatible with the core assumption of mirror neuron theory, which holds that action recognition and understanding are based on motor simulation.".[41] However, in the same year, Kilner et al. showed that if goal directed actions are used as stimuli, both IPL and premotor regions show the repetition suppression between observation and execution that is predicted by mirror neurons.[42]

In 2009, Greg Hickok published an extensive argument against the claim that mirror neurons are involved in action-understanding: "Eight Problems for the Mirror Neuron Theory of Action Understanding in Monkeys and Humans." He concluded that "The early hypothesis that these cells underlie action understanding is likewise an interesting and prima facie reasonable idea. However, despite its widespread acceptance, the proposal has never been adequately tested in monkeys, and in humans there is strong empirical evidence, in the form of physiological and neuropsychological (double-) dissociations, against the claim."[14]

Vladimir Kosonogov sees another contradiction. The proponents of mirror neuron theory of action understanding postulate that the mirror neurons code the goals of others actions because they are activated if the observed action is goal-directed. However, the mirror neurons are activated only when the observed action is goal-directed (object-directed action or a communicative gesture, which certainly has a goal too). How do they "know" that the definite action is goal-directed? At what stage of their activation do they detect a goal of the movement or its absence? In his opinion, the mirror neuron system can be activated only after the goal of the observed action is attributed by some other brain structures.[43]

Neurophilosophers such as Patricia Churchland have expressed both scientific and philosophical objections to the theory that mirror neurons are responsible for understanding the intentions of others. In chapter 5 of her 2011 book, Braintrust, Churchland points out that the claim that mirror neurons are involved in understanding intentions (through simulating observed actions) is based on assumptions that are clouded by unresolved philosophical issues. She makes the argument that intentions are understood (coded) at a more complex level of neural activity than that of individual neurons. Churchland states that "A neuron, though computationally complex, is just a neuron. It is not an intelligent homunculus. If a neural network represents something complex, such as an intention [to insult], it must have the right input and be in the right place in the neural circuitry to do that".[44]

Recently, Cecilia Heyes (Professor of Experimental Psychology, Oxford) has advanced the theory that mirror neurons are the byproduct of associative learning as opposed to evolutionary adaptation. She argues that mirror neurons in humans are the product of social interaction and not an evolutionary adaptation for action-understanding. In particular, Heyes rejects the theory advanced by V.S. Ramachandran that mirror neurons have been "the driving force behind the great leap forward in human evolution."[15][45]

Development[edit]

Human infant data using eye-tracking measures suggest that the mirror neuron system develops before 12 months of age, and that this system may help human infants understand other people's actions.[46] A critical question concerns how mirror neurons acquire mirror properties. Two closely related models postulate that mirror neurons are trained through Hebbian[47] or Associative learning[48][49][50] (see Associative Sequence Learning). However, if premotor neurons need to be trained by action in order to acquire mirror properties, it is unclear how newborn babies are able to mimic the facial gestures of another person (imitation of unseen actions), as suggested by the work of Meltzoff and Moore. One possibility is that the sight of tongue protrusion recruits an innate releasing mechanism in neonates. Careful analysis suggests that 'imitation' of this single gesture may account for almost all reports of facial mimicry by new-born infants.[51]

Possible functions[edit]

Understanding intentions[edit]

Many studies link mirror neurons to understanding goals and intentions. Fogassi et al. (2005)[52] recorded the activity of 41 mirror neurons in the inferior parietal lobe (IPL) of two rhesus macaques. The IPL has long been recognized as an association cortex that integrates sensory information. The monkeys watched an experimenter either grasp an apple and bring it to his mouth or grasp an object and place it in a cup.

  • In total, 15 mirror neurons fired vigorously when the monkey observed the "grasp-to-eat" motion, but registered no activity while exposed to the "grasp-to-place" condition.
  • For 4 other mirror neurons, the reverse held true: they activated in response to the experimenter eventually placing the apple in the cup but not to eating it.

Only the type of action, and not the kinematic force with which models manipulated objects, determined neuron activity. It was also significant that neurons fired before the monkey observed the human model starting the second motor act (bringing the object to the mouth or placing it in a cup). Therefore, IPL neurons "code the same act (grasping) in a different way according to the final goal of the action in which the act is embedded".[52] They may furnish a neural basis for predicting another individual's subsequent actions and inferring intention.[52]

Learning facilitation[edit]

Another possible function of mirror neurons would be facilitation of learning. The mirror neurons code the concrete representation of the action, i.e., the representation that would be activated if the observer acted. This would allow us to simulate (to repeat internally) the observed action implicitly (in the brain) to collect our own motor programs of observed actions and to get ready to reproduce the actions later. It is implicit training. Due to this, the observer will produce the action explicitly (in his/her behavior) with agility and finesse. This happens due to associative learning processes. The more frequently a synaptic connection is activated, the stronger it becomes.[43]

Empathy[edit]

Stephanie Preston and Frans de Waal,[53]Jean Decety,[54][55] and Vittorio Gallese[56][57] and Christian Keysers[3] have independently argued that the mirror neuron system is involved in empathy. A large number of experiments using fMRI, electroencephalography (EEG) and magnetoencephalography (MEG) have shown that certain brain regions (in particular the anterior insula, anterior cingulate cortex, and inferior frontal cortex) are active when people experience an emotion (disgust, happiness, pain, etc.) and when they see another person experiencing an emotion.[58][59][60][61][62][63][64]David Freedberg and Vittorio Gallese have also put forward the idea that this function of the mirror neuron system is crucial for aesthetic experiences.[65] However, these brain regions are not quite the same as the ones which mirror hand actions, and mirror neurons for emotional states or empathy have not yet been described in monkeys.

More recently, Christian Keysers at the Social Brain Lab and colleagues have shown that people who are more empathic according to self-report questionnaires have stronger activations both in the mirror system for hand actions[66] and the mirror system for emotions,[63] providing more direct support for the idea that the mirror system is linked to empathy. Some researchers observed that the human mirror system does not passively respond to the observation of actions but is influenced by the mindset of the observer.[67] Researchers observed the link of the mirror neurons during empathetic engagement in patient care.[68]

Human self awareness[edit]

V. S. Ramachandran has speculated that mirror neurons may provide the neurological basis of human self-awareness.[69] In an essay written for the Edge Foundation in 2009 Ramachandran gave the following explanation of his theory: "... I also speculated that these neurons can not only help simulate other people's behavior but can be turned 'inward'—as it were—to create second-order representations or meta-representations of your own earlier brain processes. This could be the neural basis of introspection, and of the reciprocity of self awareness and other awareness. There is obviously a chicken-or-egg question here as to which evolved first, but... The main point is that the two co-evolved, mutually enriching each other to create the mature representation of self that characterizes modern humans".[70]

Language[edit]

In humans, functional MRI studies have reported finding areas homologous to the monkey mirror neuron system in the inferior frontal cortex, close to Broca's area, one of the hypothesized language regions of the brain. This has led to suggestions that human language evolved from a gesture performance/understanding system implemented in mirror neurons. Mirror neurons have been said to have the potential to provide a mechanism for action-understanding, imitation-learning, and the simulation of other people's behaviour.[71] This hypothesis is supported by some cytoarchitectonic homologies between monkey premotor area F5 and human Broca's area.[72] Rates of vocabulary expansion link to the ability of children to vocally mirror non-words and so to acquire the new word pronunciations. Such speech repetition occurs automatically, fast[73] and separately in the brain to speech perception.[74][75] Moreover, such vocal imitation can occur without comprehension such as in speech shadowing[76] and echolalia.[77]

Further evidence for this link comes from a recent study in which the brain activity of two participants was measured using fMRI while they were gesturing words to each other using hand gestures with a game of charades – a modality that some have suggested might represent the evolutionary precursor of human language. Analysis of the data using Granger Causality revealed that the mirror-neuron system of the observer indeed reflects the pattern of activity in the motor system of the sender, supporting the idea that the motor concept associated with the words is indeed transmitted from one brain to another using the mirror system[78]

The mirror neuron system seems to be inherently inadequate to play any role in syntax, given that this definitory property of human languages which is implemented in hierarchical recursive structure is flattened into linear sequences of phonemes making the recursive structure not accessible to sensory detection[79]

Automatic imitation[edit]

The term is commonly used to refer to cases in which an individual, having observed a body movement, unintentionally performs a similar body movement or alters the way that a body movement is performed. Automatic imitation rarely involves overt execution of matching responses. Instead the effects typically consist of reaction time, rather than accuracy, differences between compatible and incompatible trials. Research reveals that the existence of automatic imitation, which is a covert form of imitation, is distinct from spatial compatibility. It also indicates that, although automatic imitation is subject to input modulation by attentional processes, and output modulation by inhibitory processes, it is mediated by learned, long-term sensorimotor associations that cannot be altered directly by intentional processes. Many researchers believe that automatic imitation is mediated by the mirror neuron system.[80] Additionally, there are data that demonstrate that our postural control is impaired when people listen to sentences about other actions. For example, if the task is to maintain posture, people do it worse when they listen to sentences like this: "I get up, put on my slippers, go to the bathroom". This phenomenon may be due to the fact that during action perception there is similar motor cortex activation as if a human being performed the same action (mirror neurons system).[81]

Motor mimicry[edit]

In contrast with automatic imitation, motor mimicry is observed in (1) naturalistic social situations and (2) via measures of action frequency within a session rather than measures of speed and/or accuracy within trials.[82]

The integration of research on motor mimicry and automatic imitation could reveal plausible indications that these phenomena depend on the same psychological and neural processes. Preliminary evidence however comes from studies showing that social priming has similar effects on motor mimicry.[83][84]

Nevertheless, the similarities between automatic imitation, mirror effects, and motor mimicry have led some researchers to propose that automatic imitation is mediated by the mirror neuron system and that it is a tightly controlled laboratory equivalent of the motor mimicry observed in naturalistic social contexts. If true, then automatic imitation can be used as a tool to investigate how the mirror neuron system contributes to cognitive functioning and how motor mimicry promotes prosocial attitudes and behavior.[85][86]

Meta-analysis of imitation studies in humans suggest that there is enough evidence of mirror system activation during imitation that mirror neuron involvement is likely, even though no published studies have recorded the activities of singular neurons. However, it is likely insufficient for motor imitation. Studies show that regions of the frontal and parietal lobes that extend beyond the classical mirror system are equally activated during imitation. This suggests that other areas, along with the mirror system are crucial to imitation behaviors.[6]

Autism[edit]

It has also been proposed that problems with the mirror neuron system may underlie cognitive disorders, particularly autism.[87][88] However the connection between mirror neuron dysfunction and autism is tentative and it remains to be demonstrated how mirror neurons are related to many of the important characteristics of autism.[13]

Some researchers claim there is a link between mirror neuron deficiency and autism. EEG recordings from motor areas are suppressed when someone watches another person move, a signal that may relate to mirror neuron system. This suppression was less in children with autism.[87] Although these findings have been replicated by several groups,[89][90] other studies have not found evidence of a dysfunctional mirror neuron system in autism.[13] In 2008, Oberman et al. published a research paper that presented conflicting EEG evidence. Oberman and Ramachandran found typical mu-suppression for familiar stimuli, but not for unfamiliar stimuli, leading them to conclude that the mirror neuron system of children with ASD (Autism Spectrum Disorder) was functional, but less sensitive than that of typical children.[91] Based on the conflicting evidence presented by mu-wave suppression experiments, Patricia Churchland has cautioned that mu-wave suppression results cannot be used as a valid index for measuring the performance of mirror neuron systems.[92] Recent research indicates that mirror neurons do not play a role in autism:

...no clear cut evidence emerges for a fundamental mirror system deficit in autism. Behavioural studies have shown that people with autism have a good understanding of action goals.Furthermore, two independent neuroimaging studies have reported that the parietal component of the mirror system is functioning typically in individuals with autism.[93]

Some anatomical differences have been found in the mirror neuron related brain areas in adults with autism spectrum disorders, compared to non-autistic adults. All these cortical areas were thinner and the degree of thinning was correlated with autism symptom severity, a correlation nearly restricted to these brain regions.[94] Based on these results, some researchers claim that autism is caused by impairments in the mirror neuron system, leading to disabilities in social skills, imitation, empathy and theory of mind.[who?]

Many researchers have pointed out that the "broken mirrors" theory of autism is overly simplistic, and mirror neurons alone cannot explain the differences found in individuals with autism. First of all, as noted above, none of these studies were direct measures of mirror neuron activity - in other words fMRI activity or EEG rhythm suppression do not unequivocally index mirror neurons. Dinstein and colleagues found normal mirror neuron activity in people with autism using fMRI.[95] In individuals with autism, deficits in intention understanding, action understanding and biological motion perception (the key functions of mirror neurons) are not always found,[96][97] or are task dependent.[98][99] Today, very few people believe an all-or-nothing problem with the mirror system can underlie autism. Instead, "additional research needs to be done, and more caution should be used when reaching out to the media".[100]

Research from 2010[101] concluded that autistic individuals do not exhibit mirror neuron dysfunction, although the small sample size limits the extent to which these results can be generalized.

Theory of mind[edit]

In Philosophy of mind, mirror neurons have become the primary rallying call of simulation theorists concerning our "theory of mind". "Theory of mind" refers to our ability to infer another person's mental state (i.e., beliefs and desires) from experiences or their behaviour.

There are several competing models which attempt to account for our theory of mind; the most notable in relation to mirror neurons is simulation theory. According to simulation theory, theory of mind is available because we subconsciously empathize with the person we're observing and, accounting for relevant differences, imagine what we would desire and believe in that scenario.[102][103] Mirror neurons have been interpreted as the mechanism by which we simulate others in order to better understand them, and therefore their discovery has been taken by some as a validation of simulation theory (which appeared a decade before the discovery of mirror neurons).[56] More recently, Theory of Mind and Simulation have been seen as complementary systems, with different developmental time courses.[104][105][106]

At the neuronal-level, in a 2015 study by Keren Haroush and Ziv Williams using jointly interacting primates performing an iterated prisoner's dilemma game, the authors identified neurons in the anterior cingulate cortex that selectively predicted an opponent's yet unknown decisions or covert state of mind. These "other-predictive neurons" differentiated between self and other decisions and were uniquely sensitive to social context, but they did not encode the opponent's observed actions or receipt of reward. These cingulate cells may therefore importantly complement the function of mirror neurons by providing additional information about other social agents that is not immediately observable or known.[107]

Gender differences[edit]

A series of recent studies conducted by Yawei Cheng, using a variety of neurophysiological measures, including MEG,[108] spinal reflex excitability,[109] electroencephalography,[110][111] have documented the presence of a gender difference in the human mirror neuron system, with female participants exhibiting stronger motor resonance than male participants.

In another study, gender differences among mirror neuron mechanisms was reinforced in that the data showed enhanced empathetic ability in female identified or female raised individuals when compared to male equivalents. During an emotional social interaction, the female identified or raised individuals show a greater ability in emotional perspective taking than do male identified or raised individuals when interacting with another person face-to-face. This ability may be due to the fact that male socialization in most cultures requires that men limit emotional expression. However, in the study, data showed that when it came to recognizing the emotions of others, all participants' abilities were very similar and there was no key difference along a gender binary.[112]

Sleep paralysis / Ghostly Bedroom Intruders[edit]

Baland Jalal and V. S. Ramachandran have hypothesized that the mirror neuron system is important in giving rise to the intruder hallucination and out-of-body experiences during sleep paralysis.[113] According to this theory, sleep paralysis leads to disinhibition of the mirror neuron system, paving the way for hallucinations of human-like shadowy beings. The deafferentation of sensory information during sleep paralysis is proposed as the mechanism for such mirror neuron disinhibition.[113] The authors suggest that their hypothesis on the role of the mirror neuron system could be tested:

"These ideas could be explored using neuroimaging, to examine the selective activation of brain regions associated with mirror neuron activity, when the individual is hallucinating an intruder or having an out-of-body experience during sleep paralysis ."[113]

Mirror neuron function, psychosis, and empathy in schizophrenia[edit]

Recent research, which measured mu-wave suppression, suggests that mirror neuron activity is positively correlated with psychotic symptoms (i.e., greater mu suppression/mirror neuron activity was highest among subjects with the greater severity of psychotic symptoms). Researchers concluded that "higher mirror neuron activity may be the underpinning of schizophrenia sensory gating deficits and may contribute to sensory misattributions particularly in response to socially relevant stimuli, and be a putative mechanism for delusions and hallucinations."[114]

See also[edit]

References[edit]

  1. ^ abcdRizzolatti, Giacomo; Craighero, Laila (2004). "The mirror-neuron system"(PDF). Annual Review of Neuroscience. 27 (1): 169–192. doi:10.1146/annurev.neuro.27.070203.144230. PMID 15217330. 
  2. ^Keysers, Christian (2010). "Mirror Neurons"(PDF). Current Biology. 19 (21): R971–973. doi:10.1016/j.cub.2009.08.026. PMID 19922849. Archived from the original(PDF) on 2013-01-19. 
  3. ^ abcdKeysers, Christian (2011-06-23). The Empathic Brain. Kindle. 
  4. ^ abRizzolatti, Giacomo; Fadiga, Luciano (1999). "Resonance Behaviors and Mirror Neurons". Italiennes de Biologie. 137: 85–100. 
  5. ^Akins, Chana; Klein, Edward (2002). "Imitative Learning in Japanese Quail using Bidirectional Control Procedure". Animal Learning and Behavior. 30 (3): 275–281. doi:10.3758/bf03192836. PMID 12391793. 
  6. ^ abMolenberghs P, Cunnington R, Mattingley JB (July 2009). "Is the mirror neuron system involved in imitation? A short review and meta-analysis". Neuroscience and Biobehavioral Reviews. 33 (7): 975–80. doi:10.1016/j.neubiorev.2009.03.010. PMID 19580913. 
  7. ^Keysers, Christian; Gazzola, Valeria (2006). "Progress in Brain Research"(PDF). Bcn-nic.nl. Archived from the original(PDF) on 2007-06-30. 
  8. ^Michael Arbib, The Mirror System Hypothesis. Linking Language to Theory of Mind, 2005, retrieved 2006-02-17 Archived March 29, 2009, at the Wayback Machine.
  9. ^Théoret, Hugo; Pascual-Leone, Alvaro (2002). "Language Acquisition: Do as You Hear". Current Biology. 12 (21): R736–7. doi:10.1016/S0960-9822(02)01251-4. PMID 12419204. 
  10. ^Iacoboni, Marco (February 22, 2005). "Grasping the Intentions of Others with One's Own Mirror Neuron System". PLOS Biology. 3: e79. doi:10.1371/journal.pbio.0030079. PMC 1044835. PMID 15736981. 
  11. ^Blakeslee, Sandra (January 10, 2006). "Cells That Read Minds". New York Times | Science. 
  12. ^Jarrett, Christian, A Calm Look At The Most Hyped Concept In Neuroscience-Mirror Neurons, Wired,12.13.13,[1]
  13. ^ abcdeDinstein I, Thomas C, Behrmann M, Heeger DJ (2008). "A mirror up to nature". Curr Biol. 18 (1): R13–8. doi:10.1016/j.cub.2007.11.004. PMC 2517574. PMID 18177704. 
  14. ^ abcdHickok G (2009). "Eight problems for the mirror neuron theory of action understanding in monkeys and humans". J Cogn Neurosci. 21 (7): 1229–1243. doi:10.1162/jocn.2009.21189. PMC 2773693. PMID 19199415. 
  15. ^ abHeyes, Cecilia (2009). "Where do mirror neurons come from?"(PDF). Neuroscience and Biobehavioral Reviews. 
  16. ^Ferrari, PF; Rizzolatti, G. "Mirror neuron research: the past and the future". Philos Trans R Soc Lond B Biol Sci. 369: 20130169. doi:10.1098/rstb.2013.0169. PMC 4006175. PMID 24778369. 
  17. ^Di Pellegrino, G.; Fadiga, L.; Fogassi, L.; Gallese, V.; Rizzolatti, G (1992). "Understanding motor events: a neurophysiological study". Experimental Brain Research. 91: 176–180. doi:10.1007/bf00230027. PMID 1301372. 
  18. ^Rizzolatti, Giacomo; Fadiga, Luciano; Gallese, Vittorio; Fogassi, Leonardo (1996). "Premotor cortex and the recognition of motor actions". Cognitive Brain Research. 3 (2): 131–141. doi:10.1016/0926-6410(95)00038-0. PMID 8713554. 
  19. ^Rizzolatti G, Fabbri-Destro M (January 2010). "Mirror neurons: from discovery to autism". Experimental Brain Research. 200 (3-4): 223–37. doi:10.1007/s00221-009-2002-3. PMID 19760408. 
  20. ^Gallese, V.; Fadiga, L.; Fogassi, L.; Rizzolatti, Giacomo (1996). "Action recognition in the premotor cortex". Brain. 119 (2): 593–609. doi:10.1093/brain/119.2.593. PMID 8800951. 
  21. ^Ferrari; et al. (2003). "Mirror neurons responding to the observation of ingestive and communicative mouth actions in the ventral premotor cortex". European Journal of Neuroscience. 17 (8): 1703–1714. doi:10.1046/j.1460-9568.2003.02601.x. 
  22. ^Kohler; et al. (2002). "Science"(PDF). Bcn-nic.nl. Archived from the original(PDF) on 2007-06-30. 
  23. ^
Neonatal (newborn) macaque imitating facial expressions
Diagram of the brain, showing the locations of the frontal and parietal lobes of the cerebrum, viewed from the left. The inferior frontal lobe is the lower part of the blue area, and the superior parietal lobe is the upper part of the yellow area.
The mirror neurons can be activated only after the goal of the observed action has been attributed by other brain structures.

This article is about wave reflectors (mainly, specular reflection of visible light). For other uses, see Mirror (disambiguation).

"Looking glass" redirects here. For other uses, see Looking Glass (disambiguation).

"Mirrors" redirects here. For other uses, see Mirrors (disambiguation).

A mirror is an object that reflects light in such a way that, for incident light in some range of wavelengths, the reflected light preserves many or most of the detailed physical characteristics of the original light, called specular reflection. This is different from other light-reflecting objects that do not preserve much of the original wave signal other than color and diffuse reflected light, such as flat-white paint.

The most familiar type of mirror is the plane mirror, which has a flat surface. Curved mirrors are also used, to produce magnified or diminished images or focus light or simply distort the reflected image.

Mirrors are commonly used for personal grooming or admiring oneself (where they are also called looking-glasses), for viewing the area behind and on the sides on motor vehicles while driving, for decoration, and architecture. Mirrors are also used in scientific apparatus such as telescopes and lasers, cameras, and industrial machinery. Most mirrors are designed for visible light; however, mirrors designed for other wavelengths of electromagnetic radiation are also used.

Types of glass mirrors[edit]

There are many types of glass mirrors, each representing a different manufacturing process and reflection type.

An aluminium glass mirror is made of a float glass manufactured using vacuum coating, i.e. aluminium powder is evaporated (or "sputtered") onto the exposed surface of the glass in a vacuum chamber and then coated with two or more layers of waterproof protective paint.[citation needed]

A low aluminium glass mirror is manufactured by coating silver and two layers of protective paint on the back surface of glass. A low aluminium glass mirror is very clear, light transmissive, smooth, and reflects accurate natural colors. This type of glass is widely used for framing presentations and exhibitions in which a precise color representation of the artwork is truly essential or when the background color of the frame is predominantly white.[citation needed]

A safety glass mirror is made by adhering a special protective film to the back surface of a silver glass mirror, which prevents injuries in case the mirror is broken. This kind of mirror is used for furniture, doors, glass walls, commercial shelves, or public areas.[citation needed]

A silkscreen printed glass mirror is produced using inorganic color ink that prints patterns through a special screen onto glass. Various colors, patterns, and glass shapes are available. Such a glass mirror is durable and more moisture resistant than ordinary printed glass and can serve for over 20 years. This type of glass is widely used for decorative purposes (e.g., on mirrors, table tops, doors, windows, kitchen chop boards, etc.).[citation needed]

A silver glass mirror is an ordinary mirror, coated on its back surface with silver, which produces images by reflection. This kind of glass mirror is produced by coating a silver, copper film and two or more layers of waterproof paint on the back surface of float glass, which perfectly resists acid and moisture. A silver glass mirror provides clear and actual images, is quite durable, and is widely used for furniture, bathroom and other decorative purposes.[citation needed]

Decorative glass mirrors are usually handcrafted. A variety of shades, shapes and glass thickness are often available.[citation needed]

Effects[edit]

See also: Mirror image and Specular reflection

Shape of a mirror's surface[edit]

A beam of light reflects off a mirror at an angle of reflection equal to its angle of incidence (if the size of a mirror is much larger than the wavelength of light). That is, if the beam of light is shining on a mirror's surface, at a ° angle vertically, then it reflects from the point of incidence at a ° angle from vertically in the opposite direction. This law mathematically follows from the interference of a plane wave on a flat boundary (of much larger size than the wavelength).

  • In a plane mirror, a parallel beam of light changes its direction as a whole, while still remaining parallel; the images formed by a plane mirror are virtual images, of the same size as the original object (see mirror image).
  • In a concave mirror, parallel beams of light become a convergent beam, whose rays intersect in the focus of the mirror. Also known as converging mirror
  • In a convex mirror, parallel beams become divergent, with the rays appearing to diverge from a common point of intersection "behind" the mirror.
  • Spherical concave and convex mirrors do not focus parallel rays to a single point due to spherical aberration.[1] However, the ideal of focusing to a point is a commonly used approximation. Parabolic reflectors resolve this, allowing incoming parallel rays (for example, light from a distant star) to be focused to a small spot; almost an ideal point. Parabolic reflectors are not suitable for imaging nearby objects because the light rays are not parallel.

Mirror image[edit]

Main article: Mirror image

Objects viewed in a (plane) mirror will appear laterally inverted (e.g., if one raises one's right hand, the image's left hand will appear to go up in the mirror), but not vertically inverted (in the image a person's head still appears above his body).[2] However, a mirror does not usually "swap" left and right any more than it swaps top and bottom. A mirror typically reverses the forward/backward axis. To be precise, it reverses the object in the direction perpendicular to the mirror surface (the normal). Because left and right are defined relative to front-back and top-bottom, the "flipping" of front and back results in the perception of a left-right reversal in the image. (If you stand side-on to a mirror, the mirror really does reverse your left and right, because that's the direction perpendicular to the mirror.)

Looking at an image of oneself with the front-back axis flipped results in the perception of an image with its left-right axis flipped. When reflected in the mirror, your right hand remains directly opposite your real right hand, but it is perceived as the left hand of your image. When a person looks into a mirror, the image is actually front-back reversed, which is an effect similar to the hollow-mask illusion. Notice that a mirror image is fundamentally different from the object and cannot be reproduced by simply rotating the object.

For things that may be considered as two-dimensional objects (like text), front-back reversal cannot usually explain the observed reversal. In the same way that text on a piece of paper appears reversed if held up to a light and viewed from behind, text held facing a mirror will appear reversed, because the observer is behind the text. Another way to understand the reversals observed in images of objects that are effectively two-dimensional is that the inversion of left and right in a mirror is due to the way human beings turn their bodies. To turn from viewing the side of the object facing the mirror to view the reflection in the mirror requires the observer to look in the opposite direction. To look in another direction, human beings turn their heads about a vertical axis. This causes a left-right reversal in the image but not an up-down reversal. If a person instead turns by bending over and looking at the mirror image between his/her legs, up-down will appear reversed but not left-right. This sort of reversal is simply a change relative to the observer and not a change intrinsic to the image itself, as with a three-dimensional object.

History[edit]

The first mirrors used by humans were most likely pools of dark, still water, or water collected in a primitive vessel of some sort. The requirements for making a good mirror are a surface with a very high degree of flatness (preferably but not necessarily with high reflectivity), and a surface roughness smaller than the wave-length of the light. The earliest manufactured mirrors were pieces of polished stone such as obsidian, a naturally occurring volcanic glass. Examples of obsidian mirrors found in Anatolia (modern-day Turkey) have been dated to around 6000 B.C.[3] Mirrors of polished copper were crafted in Mesopotamia from 4000 B.C.,[3] and in ancient Egypt from around 3000 B.C.[4] Polished stone mirrors from Central and South America date from around 2000 B.C. onwards.[3] In China, bronze mirrors were manufactured from around 2000 B.C.,[5] some of the earliest bronze and copper examples being produced by the Qijia culture. Mirrors made of other metal mixtures (alloys) such as copper and tin speculum metal may have also been produced in China and India.[6] Mirrors of speculum metal or any precious metal were hard to produce and were only owned by the wealthy.[7] These stone and metal mirrors could be made in very large sizes, but were difficult to polish and get perfectly flat; a process that became more difficult with increased size; so they often produced warped or blurred images. Stone mirrors often had poor reflectivity compared to metals, yet metals scratch or tarnish easily, so they frequently needed polishing. Depending upon the color, both often yielded reflections with poor color rendering.[8] The poor image quality of ancient mirrors explains 1 Corinthians 13's reference to seeing "as in a mirror, darkly."

In her history of the mirror, Sabine Melchior-Bonnet draws significant attention to the relation of the mirror to Greek philosophy, specifically Socrates:

If well used, however, the mirror can aid moral meditation between man and himself. Socrates, we are told by Diogenes, urged young people to look at themselves in mirrors so that, if they were beautiful, they would become worthy of their beauty, and if they were ugly, they would know how to hide their disgrace through learning. The mirror, a tool by which to "know thyself," invited man to not mistake himself for God, to avoid pride by knowing his limits, and to improve himself. His was thus not a passive mirror of imitation but an active mirror of transformation. (p.106)[9]

Glass was a desirable material for mirrors. Because the surface of glass is naturally smooth, it produces reflections with very little blur. In addition, glass is very hard and scratch-resistant. However, glass by itself has little reflectivity, so people began coating it with metals to increase the reflectivity. Metal-coated glass mirrors are said by the Roman scholar Pliny the Elder to have been invented in Sidon (modern-day Lebanon) in the first century A.D., although no archeological evidence of them date from before the third century.[10] According to Pliny, the people of Sidon developed a technique for creating crude mirrors by coating blown glass with molten lead.[11][12] Glass mirrors backed with gold leaf are mentioned by Pliny in his Natural History, written in about 77 A.D.[13] Because there were few ways to make a smooth piece of glass with a uniform thickness, these ancient glass-mirrors were made by blowing a glass bubble, and then cutting off a small, circular section, producing mirrors that were either concave or convex. These circular mirrors were typically small, from only a fraction of an inch to as much as eight inches in diameter.[14] These small mirrors produced distorted images, yet were prized objects of high value. These ancient glass mirrors were very thin, thus very fragile, because the glass needed to be extremely thin to prevent cracking when coated with a hot, molten metal. Due to the poor quality, high cost, and small size of these ancient glass mirrors, solid metal-mirrors primarily of steel were usually preferred until the late nineteenth century.[15]

Parabolic mirrors were described and studied in classical antiquity by the mathematician Diocles in his work On Burning Mirrors.[16]Ptolemy conducted a number of experiments with curved polished iron mirrors,[17] and discussed plane, convex spherical, and concave spherical mirrors in his Optics.[18]Parabolic mirrors were also described by the physicist Ibn Sahl in the tenth century,[19] and Ibn al-Haytham discussed concave and convex mirrors in both cylindrical and spherical geometries,[20] carried out a number of experiments with mirrors, and solved the problem of finding the point on a convex mirror at which a ray coming from one point is reflected to another point.[21] By the 11th century, glass mirrors were being produced in Moorish Spain.[22]

In China, people began making mirrors by coating metallic objects with silver-mercury amalgams as early as 500 A.D. This was accomplished by coating the mirror with the amalgam, and then heating it until the mercury boiled away, leaving only the silver behind.[23]

The problems of making metal-coated, glass mirrors was due to the difficulties in making glass that was very clear, as most ancient glass was tinted green with iron. This was overcome when people began mixing soda, limestone, potash, manganese, and fern ashes with the glass. There was also no way for the ancients to make flat panes of glass with uniform thicknesses. The earliest methods for producing glass panes began in France, when people began blowing glass bubbles, and then spinning them rapidly to flatten them out into plates from which pieces could be cut. However, these pieces were still not uniform in thickness, so produced distorted images as well. A better method was to blow a cylinder of glass, cut off the ends, slice it down the center, and unroll it onto a flat hearth. This method produced the first mirror-quality glass panes, but it was very difficult and resulted in a lot of breakage. Even windows were primarily made of oiled paper or stained glass, until the mid-nineteenth century, due to the high cost of making clear, flat panes of glass.[24]

The method of making flat panes of clear glass from blown cylinders began in Germany and evolved through the Middle Ages, until being perfected by the Venetians in the sixteenth century. The Venetians began using lead glass for its crystal-clarity and its easier workability. Some time during the early Renaissance, European manufacturers perfected a superior method of coating glass with a tin-mercury amalgam, producing an amorphous coating with better reflectivity than crystalline metals and causing little thermal shock to the glass.[25] The exact date and location of the discovery is unknown, but in the sixteenth century, Venice, a city famed for its glass-making expertise, became a center of mirror production using this new technique. Glass mirrors from this period were extremely expensive luxuries.[26] For example, in the late seventeenth century, the Countess de Fiesque was reported to have traded an entire wheat farm for a mirror, considering it a bargain. These Venetian mirrors were limited in size to a maximum area of around 40 inches (100 cm) square, until modern glass panes began to be produced during the Industrial Revolution.[27] The Saint-Gobain factory, founded by royal initiative in France, was an important manufacturer, and Bohemian and German glass, often rather cheaper, was also important.

The invention of the silvered-glass mirror is credited to German chemist Justus von Liebig in 1835.[28] His process involved the deposition of a thin layer of metallic silver onto glass through the chemical reduction of silver nitrate. This silvering process was adapted for mass manufacturing and led to the greater availability of affordable mirrors. In the modern age, mirrors are often produced by the wet deposition of silver, or sometimes nickel or chromium (the latter used most often in automotive mirrors) via electroplating directly onto the glass substrate.[29]

Vacuum deposition began with the study of the sputtering phenomenon during the 1920s and 1930s, which was a common problem in lighting in which metal ejected from the electrodes coated the glass, blocking output. However, turning sputtering into a reliable method of coating a mirror did not occur until the invention of semiconductors in the 1970s. Evaporation coating was pioneered by John Strong in 1912. Aluminum was a desirable material for mirrors, but was too dangerous to apply with electroplating. Strong used evaporation coating to make the first aluminum telescope mirrors in the 1930s.[30] The first dielectric mirror was created in 1937 by Auwarter using evaporated rhodium, while the first metallic mirror to be enhanced with a dielectric coating of silicon dioxide was created by Hass the same year. In 1939 at the Schott Glass company, Walter Geffcken invented the first dielectric mirrors to use multilayer coatings (stacks).[31]

Manufacturing[edit]

Mirrors are manufactured by applying a reflective coating to a suitable substrate.[32] The most common substrate is glass, due to its transparency, ease of fabrication, rigidity, hardness, and ability to take a smooth finish. The reflective coating is typically applied to the back surface of the glass, so that the reflecting side of the coating is protected from corrosion and accidental damage by the glass on one side and the coating itself and optional paint for further protection on the other.

In classical antiquity, mirrors were made of solid metal (bronze, later silver)[33] and were too expensive for widespread use by common people; they were also prone to corrosion. Due to the low reflectivity of polished metal, these mirrors also gave a darker image than modern ones, making them unsuitable for indoor use with the artificial lighting of the time (candles or lanterns).[citation needed]

The method of making mirrors out of plate glass was invented by 13th-century Venetian glassmakers on the island of Murano, who covered the back of the glass with an amorphous coat of tin using a fire-gilding technique, obtaining near-perfect and undistorted reflection. For over one hundred years, Venetian mirrors installed in richly decorated frames served as luxury decorations for palaces throughout Europe, but the secret of the mercury process eventually arrived in London and Paris during the 17th century, due to industrial espionage. French workshops succeeded in large-scale industrialization of the process, eventually making mirrors affordable to the masses, although mercury's toxicity (a primary ingredient in gilding, which was boiled away forming noxious vapors) remained a problem.[citation needed]

In modern times, the mirror substrate is shaped, polished and cleaned, and is then coated. Glass mirrors are most often coated with silver[34] or aluminium,[35] implemented by a series of coatings:[citation needed]

  1. Tin(II) chloride
  2. Silver
  3. Chemical activator
  4. Copper
  5. Paint

The tin(II) chloride is applied because silver will not bond with the glass. The activator causes the tin/silver to harden. Copper is added for long-term durability.[36] The paint protects the coating on the back of the mirror from scratches[37] and other accidental damage.[citation needed]

In some applications, generally those that are cost-sensitive or that require great durability, such as for mounting in a prison cell, mirrors may be made from a single, bulk material such as polished metal. However, metals consist of small crystals (grains) separated by grain boundaries. Thus, crystalline metals do not reflect with perfect uniformity.[38] Other methods like wet-deposition or electroplating produce a non-crystalline coating of amorphous metal (metallic glass). Lacking any grain boundaries, the amorphous coatings have higher reflectivity than crystalline metals of the same type. Electroplating must be performed by first coating the glass with carbon, to make the surface electrically conductive, thus the adhesion is often not as good as with wet-deposition. Both lack the ability to produce perfectly uniform thicknesses with high precision.[39] When high precision or reflectivity is not a requirement, the coating may be placed on the back of the mirror so that the light passes through the glass, and the coating is the second surface it encounters. Therefore, these are called second-surface mirrors, which have the added benefit of high durability, because the glass substrate can protect the coating from damage.[40]

For technical applications such as laser mirrors, the reflective coating is typically applied by vacuum deposition. Vacuum deposition provides an effective means of producing a very uniform coating, and controlling the thickness with high precision.[41] In applications where great precision and low losses are required, the coated side of the mirror may be the first material encountered by the light, referred to as a first-surface mirror. This eliminates refraction and double reflections, also called "ghost reflections" (a weak reflection from the surface of the glass, and a stronger one from the reflecting metal), and reduces absorption of light by the mirror.[42] Technical mirrors may use a silver, aluminium, or gold coating (the latter typically for infrared mirrors), and achieve reflectivities of 90–95% when new. A hard, protective, transparent overcoat may be applied to prevent oxidation of the reflective layer and scratching of the soft metal. Applications requiring higher reflectivity or greater durability, where wide bandwidth is not essential, use dielectric coatings, which can achieve reflectivities as high as 99.997% over a limited range of wavelengths. Because the coatings are usually transparent, absorption losses are negligible. Unlike with metals, the reflectivity of the individual dielectric-coatings is a function of Snell's law known as the Fresnel equations, determined by the difference in refractive index between layers. Therefore, the thickness and material of the coatings can be adjusted to be centered on any wavelength. Vacuum deposition can be achieved in a number of ways, including sputtering, evaporation deposition, arc deposition, reactive-gas deposition, and ion plating, among many others.[43]

Tolerances[edit]

Mirrors can be manufactured to a wide range of engineering tolerances, including reflectivity, surface quality, surface roughness, or transmissivity, depending on the desired application. These tolerances can range from low, such as found in a normal household-mirror, to extremely high, like those used in lasers or telescopes. Increasing the tolerances allows better and more precise imaging or beam transmission over longer distances. In imaging systems this can help reduce anomalies (artifacts), distortion or blur, but at a much higher cost. Where viewing distances are relatively close or high precision is not a concern, lower tolerances can be used to make effective mirrors at affordable costs.

Reflectivity[edit]

The reflectivity of a mirror is determined by the percentage of reflected light per the total of the incident light. The reflectivity may vary with wavelength. All or a portion of the light not reflected is absorbed by the mirror, while in some cases a portion may also transmit through. Although some small portion of the light will be absorbed by the coating, the reflectivity is usually higher for first-surface mirrors, eliminating both reflection and absorption losses from the substrate. The reflectivity is often determined by the type and thickness of the coating. When the thickness of the coating is sufficient to prevent transmission, all of the losses occur due to absorption. Aluminum is harder, less expensive, and more resistant to tarnishing than silver, and will reflect 85 to 90% of the light in the visible to near-ultraviolet range, but is a poor reflector of infrared wavelengths longer than 800 nm. Gold is very soft and easily scratched, costly, yet does not tarnish. Gold is greater than 96% reflective to near and far-infrared light between 800 and 12000 nm, but poorly reflects visible light with wavelengths shorter than 600 nm (yellow). Silver is expensive, soft, and quickly tarnishes, but has the highest reflectivity in the visual to near-infrared of any metal. Silver can reflect up to 98 or 99% of light to wavelengths as long as 2000 nm, but loses nearly all reflectivity at wavelengths shorter than 350 nm. Dielectric mirrors can reflect greater than 99.99% of light, but only for a narrow range of wavelengths, ranging from a bandwidth of only 10 nm to as wide as 100 nm for tunable lasers. However, dielectric coatings can also enhance the reflectivity of metallic coatings and protect them from scratching or tarnishing. Dielectric materials are typically very hard and relatively cheap, however the number coats needed generally makes it an expensive process. In mirrors with low tolerances, the coating thickness may be reduced to save cost, and simply covered with paint to absorb transmission.[44]

Surface quality[edit]

Surface quality, or surface accuracy, measures the deviations from a perfect, ideal surface shape. Increasing the surface quality reduces distortion, artifacts, and aberration in images, and helps increase coherence, collimation, and reduce unwanted divergence in beams. For plane mirrors, this is often described in terms of flatness, while other surface shapes are compared to an ideal shape. The surface quality is typically measured with items like interferometers or optical flats, and are usually measured in wavelengths of light (λ). These deviations can be much larger or much smaller than the surface roughness. A normal household-mirror made with float glass may have flatness tolerances as low as 9--14λ per inch, equating to a deviation of 5600 through 8800 nanometers from perfect flatness. Precision ground and polished mirrors intended for lasers or telescopes may have tolerances as high as λ/50 (1/50 of the wavelength of the light, or around 12 nm).[45][46] The surface quality can be affected by factors such as temperature changes, internal stress in the substrate, or even bending effects that occur when combining materials with different coefficients of thermal expansion, similar to a bimetallic strip.[47]

Surface roughness[edit]

Surface roughness describes the texture of the surface, often in terms of the depth of the microscopic scratches left by the polishing operations. Surface roughness determines how much of the reflection is specular and how much diffuses, controlling how sharp or blurry the image will be. For perfectly specular reflection, the surface roughness must be kept smaller than the wavelength of the light. Microwaves, which sometimes have a wavelength greater than an inch (2.5 cm) can reflect specularly off a metal screen-door, continental ice-sheets, or desert sand, while visible light, having wavelengths of only a few hundred nanometers (a few hundred-thousandths of an inch), must meet a very smooth surface to produce specular reflection. For wavelengths that are approaching or are even shorter than the diameter of the atoms, such as X-rays, specular reflection can only be produced by surfaces that are at a grazing incidence from the rays. Surface roughness is typically measured in microns, wavelength, or grit size (with ~ 80,000 to 100,000 grit (λ/2--λ/4) being "optical quality").[48][49][50]

Transmissivity[edit]

Transmissivity is determined by the percentage of light transmitted per the incident light. Transmissivity is usually the same from both first and second surfaces. The combined transmitted and reflected light, subtracted from the incident light, measures the amount absorbed by both the coating and substrate. For transmissive mirrors, such as one-way mirrors, beam splitters, or laser output couplers, the transmissivity of the mirror is an important consideration. The transmissivity of metallic coatings are often determined by their thickness. For precision beam-splitters or output couplers, the thickness of the coating must be kept at very high tolerances to transmit the proper amount of light. For dielectric mirrors, the thickness of the coat must always be kept to high tolerances, but it is often more the number of individual coats that determine the transmissivity. For the substrate, the material used must also have good transmissivity to the chosen wavelengths. Glass is a suitable substrate for most visible-light applications, but other substrates such as zinc selenide or synthetic sapphire may be used for infrared or ultraviolet wavelengths.[51]

Applications[edit]

Personal grooming[edit]

Mirrors are commonly used as aids to personal grooming.[52] They may range from small sizes, good to carry with oneself, to full body sized; they may be handheld, mobile, fixed or adjustable. A classic example of the latter is the cheval glass, which may be tilted.

Safety and easier viewing[edit]

Convex mirrors
Convex mirrors provide a wider field of view than flat mirrors,[53] and are often used on vehicles,[54] especially large trucks, to minimize blind spots. They are sometimes placed at road junctions, and corners of sites such as parking lots to allow people to see around corners to avoid crashing into other vehicles or shopping carts. They are also sometimes used as part of security systems, so that a single video camera can show more than one angle at a time.[citation needed] . Convex mirrors as decoration are used in interior design to provide a predominantly experiential effect. [55]
Mouth mirrors or "dental mirrors"
Mouth mirrors or "dental mirrors" are used by dentists to allow indirect vision and lighting within the mouth. Their reflective surfaces may be either flat or curved.[56] Mouth mirrors are also commonly used by mechanics to allow vision in tight spaces and around corners in equipment.
Rear-view mirrors
Rear-view mirrors are widely used in and on vehicles (such as automobiles, or bicycles), to allow drivers to see other vehicles coming up behind them.[57] On rear-view sunglasses, the left end of the left glass and the right end of the right glass work as mirrors.

One-way mirrors and windows[edit]

Main article: One-way mirror

One-way mirrors
One-way mirrors (also called two-way mirrors) work by overwhelming dim transmitted light with bright reflected light.[58] A true one-way mirror that actually allows light to be transmitted in one direction only without requiring external energy is not possible as it violates the second law of thermodynamics[citation needed]: if one placed a cold object on the transmitting side and a hot one on the blocked side, radiant energy would be transferred from the cold to the hot object. Thus, though a one-way mirror can be made to appear to work in only one direction at a time, it is actually reflective from either side.
One-way windows
One-way windows can be made to work with polarized light in the laboratory without violating the second law. This is an apparent paradox that stumped some great physicists, although it does not allow a practical one-way mirror for use in the real world.[59][60]Optical isolators are one-way devices that are commonly used with lasers.

Signalling[edit]

Main article: Heliograph

With the sun as light source, a mirror can be used to signal by variations in the orientation of the mirror. The signal can be used over long distances, possibly up to 60 km on a clear day. This technique was used by Native American tribes and numerous militaries to transmit information between distant outposts.

Mirrors can also be used for search to attract the attention of search and rescue helicopters. Specialized type of mirrors are available and are often included in military survival kits.

Technology[edit]

Televisions and projectors[edit]

Microscopic mirrors are a core element of many of the largest high-definition televisions and video projectors. A common technology of this type is Texas Instruments' DLP. A DLP chip is a postage stamp-sized microchip whose surface is an array of millions of microscopic mirrors. The picture is created as the individual mirrors move to either reflect light toward the projection surface (pixel on), or toward a light absorbing surface (pixel off).

Other projection technologies involving mirrors include LCoS. Like a DLP chip, LCoS is a microchip of similar size, but rather than millions of individual mirrors, there is a single mirror that is actively shielded by a liquid crystal matrix with up to millions of pixels. The picture, formed as light, is either reflected toward the projection surface (pixel on), or absorbed by the activated LCD pixels (pixel off). LCoS-based televisions and projectors often use 3 chips, one for each primary color.

Large mirrors are used in rear projection televisions. Light (for example from a DLP as mentioned above) is "folded" by one or more mirrors so that the television set is compact.

Solar power[edit]

Mirrors are integral parts of a solar power plant. The one shown in the adjacent picture uses concentrated solar power from an array of parabolic troughs.[61]

Instruments[edit]

See also: Mirror support cell

Telescopes and other precision instruments use front silvered or first surface mirrors, where the reflecting surface is placed on the front (or first) surface of the glass (this eliminates reflection from glass surface ordinary back mirrors have). Some of them use silver, but most are aluminium, which is more reflective at short wavelengths than silver. All of these coatings are easily damaged and require special handling. They reflect 90% to 95% of the incident light when new. The coatings are typically applied by vacuum deposition. A protective overcoat is usually applied before the mirror is removed from the vacuum, because the coating otherwise begins to corrode as soon as it is exposed to oxygen and humidity in the air. Front silvered mirrors have to be resurfaced occasionally to keep their quality. There are optical mirrors such as mangin mirrors that are second surface mirrors (reflective coating on the rear surface) as part of their optical designs, usually to correct optical aberrations.[62]

The reflectivity of the mirror coating can be measured using a reflectometer and for a particular metal it will be different for different wavelengths of light. This is exploited in some optical work to make cold mirrors and hot mirrors. A cold mirror is made by using a transparent substrate and choosing a coating material that is more reflective to visible light and more transmissive to infrared light.

A hot mirror is the opposite, the coating preferentially reflects infrared. Mirror surfaces are sometimes given thin film overcoatings both to retard degradation of the surface and to increase their reflectivity in parts of the spectrum where they will be used. For instance, aluminum mirrors are commonly coated with silicon dioxide or magnesium fluoride. The reflectivity as a function of wavelength depends on both the thickness of the coating and on how it is applied.

For scientific optical work, dielectric mirrors are often used. These are glass (or sometimes other material) substrates on which one or more layers of dielectric material are deposited, to form an optical coating. By careful choice of the type and thickness of the dielectric layers, the range of wavelengths and amount of light reflected from the mirror can be specified. The best mirrors of this type can reflect >99.999% of the light (in a narrow range of wavelengths) which is incident on the mirror. Such mirrors are often used in lasers.

In astronomy, adaptive optics is a technique to measure variable image distortions and adapt a

A mirror, reflecting a vase
A first surface mirror coated with aluminum and enhanced with dielectric coatings. The angle of the incident light (represented by both the light in the mirror and the shadow behind it) exactly matches the angle of reflection (the reflected light shining on the table).
Mirror image in a surveillance mirror, which reflects the person taking the photo.
Photographer taking picture of himself in curved mirror at the Universum museum in Mexico City
A large convex mirror. Distortions in the image increase with the viewing distance.
A sculpture of a lady looking into a mirror, from Halebidu, India, 12th century
Four different mirrors, showing the difference in reflectivity. Clockwise from upper left: dielectric (80%), aluminum (85%), chrome (25%), and enhanced silver (99.9%). All are first-surface mirrors except the chrome mirror. The dielectric mirror reflects yellow light from the first-surface, but acts like an antireflection coating to purple light, thus produced a ghost reflection of the lightbulb from the second-surface.
A dielectric mirror-stack works on the principle of thin-film interference. Each layer has a different refractive index, allowing each interface to produce a small amount of reflection. When the thickness of the layers is proportional to the chosen wavelength, the multiple reflections constructively interfere. Stacks may consist of a few to hundreds of individual coats.
Polishing the primary mirror for the Hubble space telescope. A deviation in the surface quality of approximately 4λ resulted in poor images initially, which was eventually compensated for using corrective optics.
A dielectric, laser output-coupler that is 75--80% reflective between 500 and 600 nm. Left: The mirror is highly reflective to yellow and green but highly transmissive to red and blue. Right: The mirror transmits 25% of the 589 nm laser light. Because the smoke particles diffract more light than they reflect, the beam appears much brighter when reflecting back toward the observer.
Flatness errors, like rippled dunes across the surface, produced these artifacts, distortion, and low image quality in the far field reflection of a household mirror.
Reflections in a spherical convex mirror. The photographer is seen at top right.
E-ELT mirror segments under test
Deformable thin-shell mirror. It is 1120 millimetres across but just 2 millimetres thick, making it much thinner than most glass windows.[63]
A dielectric coated mirror used in a dye laser. The mirror is over 99% reflective at 550 nanometers, (yellow), but will allow most other colors to pass through.
A dielectric mirror used in tunable lasers. With a center wavelength of 600 nm and bandwidth of 100 nm, the coating is totally reflective to the orange construction paper, but only reflects the reddish hues from the blue paper.

0 Replies to “Espelho Reflective Essay”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *